您的位置首页生活百科

圆周率的规律

圆周率的规律

的有关信息介绍如下:

圆周率的规律

圆周率是超越数,不能满足任何整系数代数方程的实数,圆周率π=3.1415926535…,自然对数的底e=2.718281828…可以证明超越数有无穷个。圆周率不是代数数的数,它超越代数方法所及的范围之外。

圆周率的起源:

最先得出π≈3.14的是希腊的阿基米德(约公元前240年),最先给出π小数后面四位准确值的是希腊人托勒密(约公元前150年),最早算出π小数后七位准确值的是我国的祖冲之,1610年荷兰籍德数学家鲁道夫应用内接和外切正多边形计算π值,通过2边形计算π到35位小数,1630年格林贝格利用斯涅耳的改进方法计算π值到39位小数,这是利用古典方法计算π值的最重要尝试。

性质:

圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sinx= 0的最小正实数x。

圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。

通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

参考资料来源:百度百科——圆周率